Reverse Mathematics – By John Stillwell, a review
NB. I was sent this book as a review copy.
From Princeton University Press
I’m not sure I’ve read a mathematics book which was so hard to review, not because of the quality of the book (which is superb), but because the way of thinking is in some senses so different to the way we normally think about mathematics. This, indeed, is also the book’s best feature. This book gets you thinking about mathematics in ways which I have never explored before, and which have definitely given me a new, and I think, improved perspective on formal mathematics.
In general in mathematics we start with a set of assumptions (axioms), and explore the consequences of them. Within Euclidean geometry we start with ideas about lines, and points, and circles, and then see what other theorems can be proved from these. Within set theory too, we start with a set of ideas about equalities of sets, existence, pairings, unions etc which we hold to be true and then see what can be said of other properties of sets, which are not straightforwardly stated in the axioms.…