About Jonathan Shock

I'm a lecturer at the University of Cape Town in the department of Mathematics and Applied Mathematics. I teach mathematics both at undergraduate and at honours levels and my research interests lie in the intersection of applied mathematics and many other areas of science, from biology and neuroscience to fundamental particle physics and psychology.

Some more volume visualisations

Here is an animation which may help you imaging a shape which has a circular base, with parallel slices perpendicular to the base being equilateral triangles:movie3

 

The same thing, where the slices are squares.movie4

 

And here is the region in the (x,y) plane between y=\sqrt{x}, the x-axis and the line x=1. rotated about the y-axis. Here a thin shell is drawn in the volume, then pulled out. Then it is replaced, then the volume is filled with shells, and each of them is pulled out of the volume vertically. This is to give you an idea about how to visualise the method of cylindrical shells.

 

movie5

How clear is this post?
By | September 14th, 2017|Courses, First year, MAM1000, Undergraduate|1 Comment

Guidelines for visualising and calculating volumes of revolution

I have seen some people try to blindly use the formulae for volumes of revolution by cylindrical cross-sections and by cylindrical shells, and I thought that I would write a guide as to how I would recommend tackling such problems, as generally just using the formulae will lead you down blind alleys.

I’ve created an example, with an animation, which I hope will help to master this technique.

So, here is a relatively fool-proof strategy:

  1. Draw the region which you are going to have to rotate around some axis. This will generally be a matter of:
    • Drawing the curves that you have been given
    • Finding where they intersect
  2. Draw the line about which you are supposed to rotate the region
  3. Draw the reflection of the region about the line of rotation: This gives you a slice through the volume that will be formed
  4. Now you have to decide which method to use:
    • Take a slice through the volume perpendicular to the axis of rotation.
By | September 13th, 2017|Courses, First year, MAM1000, Uncategorized, Undergraduate|2 Comments

Riemann sums to definite integral conversion

In the most recent tutorial there is a question about converting a Riemann sum to a definite integral, and it seems to be tripping up quite a few students. I wanted to run through one of the calculations in detail so you can see how to answer such a question.

 

Let’s look at the example:

 

\lim_{n\rightarrow\infty}\sum_{i=1}^n\left(9\left(4+(i-1)\frac{6}{n}\right)^2-8\left(4+(i-1)\frac{6}{n}\right)+7\right)\frac{13}{n}

 

There are many ways to tackle such a question but let’s take one particular path. Let’s start by the fact that when the limit is defined, the limit of a sum is the sum of the limits. We can split up our expression into 3, which looks like:

 

\lim_{n\rightarrow\infty}\sum_{i=1}^n9\left(4+(i-1)\frac{6}{n}\right)^2\frac{13}{n}-\lim_{n\rightarrow\infty}\sum_{i=1}^n\left(8\left(4+(i-1)\frac{6}{n}\right)\right)\frac{13}{n}+\lim_{n\rightarrow\infty}\sum_{i=1}^n7\frac{13}{n}

 

Let’s tackle each of these separately. Let’s look at the first term:

 

\lim_{n\rightarrow\infty}\sum_{i=1}^n9\left(4+(i-1)\frac{6}{n}\right)^2\frac{13}{n}

 

Well, we can take the factor of 13 outside the front of the whole thing to start with, along with the factor of 9, and this will give

 

13\times 9\lim_{n\rightarrow\infty}\sum_{i=1}^n\left(4+(i-1)\frac{6}{n}\right)^2\frac{1}{n}

 

We see here that we have a sum of terms, and a factor which looks like \frac{1}{n} in each term.…

By | August 23rd, 2017|Courses, First year, MAM1000, Uncategorized, Undergraduate|8 Comments

Philosophy of Mathematics, by Øystein Linnebo – A review, by Henri Laurie

From http://press.princeton.edu/titles/11024.html

This book was sent to me by the publisher as a review copy.

PHILOSOPHY OF MATHEMATICS OR PHILOSOPHY FOR MATHEMATICS? By Henri Laurie.

Review of Øystein Linnebo’s “Philosophy of Mathematics”, Princeton University Press, 2017. (This one is impressionistic; I hope to present a more conventional summary-of-contents review in due course).

I’ve just read Øystein Linnebo’s superb book on the philosophy of mathematics. It is very, very good. Superbly clear, concise, well organised, it gives not only a very accessible introduction but also takes the reader all the way to the cutting edge of what philosophers are doing in the philosophy of mathematics. Above all, Linnebo writes as a fully engaged philosopher and makes his preferred choice of philosophical position clear. But this is no mere polemic: I felt he clearly and forcefully presents the strengths and weaknesses of all the philosophical positions he discusses.

That said, even an introductory text in philosophy these days is not always easy reading.…

By | August 21st, 2017|Book reviews, Reviews|4 Comments

Some sum identities

During tutorials last week, a number of students asked how to understand identities that are used in the calculation of various Riemann sums and their limits.

These identities are:

 

\sum_{i=1}^n 1=n

\sum_{i=1}^n i=\frac{n(n+1)}{2}

\sum_{i=1}^n i^2=\frac{n(n+1)(2n+1)}{6}

\sum_{i=1}^n i^3=\left(\frac{n(n+1)}{2}\right)^2

 

Let’s go through these one by one. We must first remember what the sigma notation means. If we have:

 

\sum_{i=1}^n f(i)

 

It means the sum of terms of the forms f(i) for i starting with 1 and going up to i=n. Sometimes n will actually be an integer, and sometimes it will be left arbitrary. So, the above sum can be written as:

 

\sum_{i=1}^n f(i)=f(1)+f(2)+f(3)+f(4)+....+f(n-2)+f(n-1)+f(n)

 

We haven’t specified what f is, but that’s because this statement is general and applies for any time of function of i. In the first of the identities above, the function is simply f(i)=1, which isn’t a very interesting function, but it still is one. It says, whatever i we put in, output 1. So this sum can be written as:

 

\sum_{i=1}^n 1=1+1+1+1+....+1

 

Where there are n terms.…

By | August 20th, 2017|Courses, First year, MAM1000, Uncategorized, Undergraduate|3 Comments

MAM1000W 2017 semester 2, lecture 1 (part ii)

The distance problem

If I want to know how far I walked during an hour, I can ask how far I walked in the first five minutes, and how far I walked in the second five minutes, and how far I walked in the third five minutes, etc. and add them all together. ie. I could write:

 

d=d_1+d_2+d_3+d_4+...d_{12}

 

Where d_i is the distance walked in the i^{th} five minutes. To calculate a distance, we need to know how fast we are going, and for how long. In fact:

 

distance=velocity \times time

 

where you can think of velocity as the same thing as speed (though there are subtle differences which you will find out about later). This formula works if the velocity is constant, but what if it is changing. Well, if we have a graph of velocity against time, then we can think about splitting the graph into intervals (like the five minute intervals above), and approximating that during a small interval of time, the velocity is roughly constant.…

MAM1000W 2017 semester 2, lecture 1 (part i)

I wanted to put up a little summary of some of the most important things to remember from the end of last semester. There was a sudden input of new concepts, so let’s put some of them down here to get a clear reminder of what we need to know. A few things in this post:

  • The antiderivative
  • Sigma notation
  • Areas under curves

Antiderivatives

An antiderivative of a function f on an open interval I is a function F such that:

 

F'(x)=f(x) for every x\in I

 

Note that we say an antiderivative, not the antiderivative. There can be many functions whose derivatives give the same thing. While we know that:

 

\frac{d}{dx}\sin x=\cos x

 

and therefore  \sin x is an antiderivative of \cos x, we can also say that:

 

\frac{d}{dx}(\sin x+3)=\cos x

 

So \sin x+3 is also an antiderivative of \cos x. In fact for any constant c it is true that \sin x+c is an antiderivative of \cos x. We will come up with some clever notation for the antiderivative soon.…

Unsolved!: The History and Mystery of the World’s Greatest Ciphers from Ancient Egypt to Online Secret Societies by Craig P. Bauer – A review

This book was sent to me by the publisher as a review copy.

This is a book of some impressive magnitude, both in terms of the time span that it covers (being millennia), as well as the ways in which it discusses the context and content of the ciphers, most of which, as the title suggests, are unsolved. The book starts with perhaps the most mysterious of all unbroken ciphers: The Voynich Manuscript (the entirety of which can be found here). This story in itself is perhaps the most fascinating in the history of all encrypted documents, and that we still don’t know if it truly contains anything of interest, or is just a cleverly constructed (though several hundred year old) hoax makes it all the more intriguing.

The writing rather effortlessly weaves between the potential origin stories, the history of the ownership of the manuscript and the attempts to decode it.…

By | July 29th, 2017|Book reviews, English, Level: Simple, Reviews|1 Comment

On the place of struggle within Mathematics – how to truly get rid of distractions

I have had a lot of conversations with students over the last couple of weeks which made me want to write this post. I apologise in advance that it will be rather long.

It’s also important to state that this message doesn’t hold for everyone, but it is worth seriously thinking about.

Many students recently have asked me about how to go through tutorials, and how to revise. They are finding that while they are sitting down for a long time with their tutorials, the tests still feel really hard.

To an important extent, technologies have changed the way we think and act over the last couple of decades. In many ways, things were easier in my day when we didn’t have so many technological distractions. Cellphones were rare when I was a student and smartphones were still over a decade away! There was no Facebook, or Youtube, or Instagram.…

By | June 16th, 2017|Uncategorized|14 Comments

Lecturer/Senior lecturer position available in the UCT department of Maths and Applied Maths

The Department of Maths and Applied Maths at UCT has a position open at the level of lecturer or senior lecturer. The advert can be found here:

SCI_17099_L_SL_MAM

Applications in all areas of Mathematics and Applied Mathematics will be considered.

Minimum requirements include:

For the level of Lecturer:

  • A PhD (at the time of appointment) in Mathematics or Applied Mathematics or related areas.
  • A record of research outputs.
  • Postdoctoral and some teaching experience would be advantageous”

    For the level of Senior Lecturer:

  • A PhD in Mathematics or Applied Mathematics
  • An established track record of published research outputs.
  • Demonstrable teaching experience.
  • A record of postgraduate student supervision.

    Responsibilities include:

  • Teaching and developing undergraduate and postgraduate courses offered by the department of Mathematics and Applied Mathematics.
  • Developing and pursuing an active research program, which includes student supervision.
  • Course convening, departmental and faculty administrative duties.

    The annual remuneration package for 2017, including benefits are:

  • Lecturer R592,451
  • Senior Lecturer R728,442

    To apply, please e-mail the documents listed below in a single pdf file to Ms Vathiswa Mbangi at recruitment04@uct.ac.za

  • –  UCT Application Form (download at http://forms.uct.ac.za/hr201.doc)
  • –  Cover letter, and
  • –  Curriculum Vitae (CV)
  • –  Teaching and Research statement

    An application which does not comply with the above requirements will be regarded as incomplete.

By | June 5th, 2017|Advertising, Job advert|0 Comments